Robust Equilibria under Linear Tracing Procedure

Hailin Liu

Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Introduction

- Motivated by Ellsberg paradox, decision theory has been greatly improved by replacing a single probability distribution with imprecise probabilities (IP) to represent decision makers' uncertainty.
- As an extension of decision theory, game theory is concerned with interactive situations (multi-agent decision making). Can game theory be enriched by introducing imprecise probabilities?
- We present a preliminary investigation into the issue by introducing IP into the linear tracing procedure (LTP) proposed by Harsanyi and Selten.

Game-Theoretic Preliminaries

- A finite normal form game $G = \langle I, \{S_i\}, \{u_i\} \rangle_{i \in I}$ consists of:
 - \blacktriangleright I: a finite set of players who make decisions
 - S_i : a finite set of actions of player i (pure strategies)
 - $u_i:S o \mathbb{R}$ denotes player i's payoff function, where $S=\prod_{i\in I}S_i$.
- Let Δ_i denote the set of player *i*'s mixed strategies, which can be regarded as probability measures on S_i .

Nash Equilibrium and Its Problem

Nash equilibrium is perhaps the most well-known solution concept for non-cooperative games, which captures the idea that no player has a strict incentive to deviate given the other players' strategies unchanged.

Basic Idea

- Note that LTP employs a common prior distribution to represent each player's initial uncertainty about other players' strategy choices.
- It is suggested by the Ellsberg paradox that uncertainty cannot be adequately represented by a single probability distribution and should be expressed by imprecise probabilities, e.g., a set of probabilities.
- Thus, we reexamine LTP by using a (common) set of prior distributions to describe each player's initial beliefs about other players' strategy choices.

Iterative Application of LTP

- Recall that LTP considers a sequence of auxiliary games Γ^t_p to investigate how the equilibria of the original game G behave in these games. LTP should also be applicable to these auxiliary games.
- For each auxiliary game Γ_p^t , consider a new one-parameter class of auxiliary games $\Lambda_p^{t'} = \langle I, \{S_i\}, \{u_i^{t,p}\} \rangle_{i \in I}$ with $t' \in [0, 1]$, where

 $u_i^{t',p}(\delta_i,\delta_{-i})=t'\cdot u_i^t(\delta_i,\delta_{-i})+(1-t')\cdot u_i^t(\delta_i,p_{-i}).$

• Clearly, $\Lambda_p^0 = \Gamma_p^0$ and $\Lambda_p^1 = \Gamma_p^t$. Thus, the class of auxiliary games $\Lambda_p^{t'}$ is a subset of the family of auxiliary games Γ_p^t with respect to the game G.

Robustness under LTP

Carnegie Mellon University

One problem with NE: There are a variety of nontrivial games that generate (sometimes infinitely) many different Nash equilibria.

• The game has three Nash equilibrium strategy profiles: $A = (s_{11}, s_{21})$, $C = (s_{12}, s_{22})$, and $E = ((\frac{3}{4}, \frac{1}{4}), (\frac{3}{4}, \frac{1}{4}))$.

Review of LTP

- LTP can be regarded as a rational deliberation process which models how the players gradually update their strategy plans in light of what they know about the opponents' strategic reactions to their own expectations.
- Starting with a common prior distribution, all players gradually change their own tentative strategy plans, as well as their expectations about the other players possible strategies, until they arrive at a certain Nash equilibrium.

Example of LTP

• For a game $G = \langle I, \{S_i\}, \{u_i\} \rangle_{i \in I}$ and a prior $p \in \Delta$, consider a one-parameter family of auxiliary games $\Gamma^{t,p} = \langle I, \{S_i\}, \{u_i^{t,p}\} \rangle_{i \in I}$ with $t \in [0, 1]$, where

$$u_i^{t,p}(\delta_i,\delta_{-i}) = t \cdot u_i(\delta_i,\delta_{-i}) + (1-t) \cdot u_i(\delta_i,p_{-i}).$$

- Let $\Phi^t(\delta^*)$ denote the source set of δ^* with respect to the game Γ_p^t .
- Definition: The stability of a prior strategy $p \in \Delta$ w.r.t. δ^* is a real-valued function γ on $\Phi(\delta^*)$, which is defined as $\gamma(p, \delta^*) = 1 t^*$, where t^* is the smallest t such that $p \in \Phi^t(\delta^*)$.
- Definition: Let the players' initial beliefs about the other players' possible behaviors be represented by a set of prior strategies \mathcal{P} . The robustness of an equilibrium δ^* w.r.t. \mathcal{P} is defined as $R(\delta^*, \mathcal{P}) = \min_{p \in \mathcal{P}} \gamma(p, \delta^*)$, i.e., the minimum stability index associated with the priors w.r.t. \mathcal{P} .

Example: ϵ -contamination under Equilibria Coordination

- Suppose that players' initial belief is represented by the ϵ -contaminated class $\mathcal{P} = \{(1 - \epsilon)P + \epsilon Q, Q \in \mathscr{P}\}$ when $P(E_1) = 0.7, P(E_2) = 0.2, P(E_3) = 0.1$ and $\epsilon = 0.2$, where $\mathscr{P} = \{Q : Q =$ $p_1E_1 + p_2E_2 + p_3E_3, p_1 + p_2 + p_3 = 1\}.$
- ▶ $R(E_1, \mathcal{P}) = R(E_2, \mathcal{P}) = R(E_3, \mathcal{P}) = 1.$

D

Example: Coordination Failure

Suppose that all players initially believe that they will mostly choose a strategy from the ε-contaminated class *P*, or otherwise adopt the strategy *D* = (s₁₂, s₂₁) with small probability. All players' initial beliefs are represented by *P'* = {(1 − α)*P* + α*D*, 0.05 ≤ α ≤ 0.2}.
B(*E*, *P'*) = 0.80 *B*(*E*, *P'*) = 0.78 and

 Note that the auxiliary games are solved by considering the solution concept Nash equilibrium as well.

Source Sets

• Definition: For a given game G and a strategy $\delta^* \in NE(G)$, the source set for δ^* , denoted by $\Phi(\delta^*)$, is defined as the set of all prior strategies, based on which the linear tracing procedure yields the Nash equilibrium δ^* as outcome.

►
$$R(E_1, \mathcal{P}') \equiv 0.89, R(E_2, \mathcal{P}') \equiv 0.78$$
, and $R(E_3, \mathcal{P}') = 0.$

Concluding Remarks

- As a preliminary investigation, we propose a notion of maximin robustness of equilibria by reexamining LTP where players' initial beliefs are represented by a set of probabilities rather a single probability measure.
- In this paper we employ the maximin criterion to define the concept of robustness of equilibria.
 - We have no intention to argue that the maximin rule is the appropriate decision rule under uncertainty.
 - ► In fact, we intend to consider using some other decision rules like *E*-admissibility and Maximality to develop solution concepts for games with imprecise probabilities.
- We shall consider developing new solution concepts based on some other game-theoretic solution concepts other than Nash equilibrium by using imprecise probabilities to represent uncertainty in games.

Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA

hailinl@andrew.cmu.edu