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Introduction

» Motivated by Ellsberg paradox, decision theory has been greatly
improved by replacing a single probability distribution with imprecise
probabilities (IP) to represent decision makers’ uncertainty.

» As an extension of decision theory, game theory is concerned with
interactive situations (multi-agent decision making). Can game theory be
enriched by introducing imprecise probabilities?

» We present a preliminary investigation into the issue by introducing IP into
the linear tracing procedure (LTP) proposed by Harsanyi and Selten.

Game-Theoretic Preliminaries

> A finite normal form game G = (I, {S;}, {w;})icr consists of:
» I: a finite set of players who make decisions
» S;: a finite set of actions of player ¢ (pure strategies)
> u; : § — R denotes player i's payoff function, where § = [[,.; S;.

» Let A; denote the set of player 2's mixed strategies, which can be
regarded as probability measures on S;.

Nash Equilibrium and Its Problem

» Nash equilibrium is perhaps the most well-known solution concept for
non-cooperative games, which captures the idea that no player has a strict
incentive to deviate given the other players’ strategies unchanged.

» One problem with NE: There are a variety of nontrivial games that
generate (sometimes infinitely) many different Nash equilibria.
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» The game has three Nash equilibrium strategy profiles: A = (s11, S21),
C = (812, 322), and £ = ((%9 %)7 (%ai))-

Review of LTP

» LTP can be regarded as a rational deliberation process which models how
the players gradually update their strategy plans in light of what they know
about the opponents’ strategic reactions to their own expectations.

» Starting with a common prior distribution, all players gradually change their
own tentative strategy plans, as well as their expectations about the other
players possible strategies, until they arrive at a certain Nash equilibrium.

Example of LTP

» Fora game G = (I,{S;},{ui})icr and a prior p € A, consider a
one-parameter family of auxiliary games TP = (I, {S;}, {u."})ics
with t € [0, 1], where

w;P (85 0-5) =t - wi(65,0_) + (1 — t) - us(8i, p—i)-

» Note that the auxiliary games
are solved by considering the
solution concept Nash
equilibrium as well.

» The graph of LTP starting with
the prior p = ((%7 %)9 (%a %))
is shown to the right.
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> . For a given game GG and a
strategy 0* € N E(G), the source set
for 6*, denoted by ®(46*), is defined as
the set of all prior strategies, based on
which the linear tracing procedure yields
the Nash equilibrium 0* as outcome.
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» Note that LTP employs a common prior distribution to represent each
player’s initial uncertainty about other players’ strategy choices.

» It is suggested by the Ellsberg paradox that uncertainty cannot be
adequately represented by a single probability distribution and should be
expressed by imprecise probabilities, e.g., a set of probabilities.

» Thus, we reexamine LTP by using a (common) set of prior distributions to
describe each player’s initial beliefs about other players’ strategy choices.

Iterative Application of LTP

» Recall that LTP considers a sequence of auxiliary games I‘; to investigate
how the equilibria of the original game G behave in these games. LTP
should also be applicable to these auxiliary games.

» For each auxiliary game I‘f), consider a new one-parameter class of
auxiliary games Ag = (I,{S;}, {u;"})icr with t’ € [0, 1], where
ulP(8;,0_;) =t - ul(6;,6_;) + (1 —t') - ul(d;, p_i)-

» Clearly, Ag = I‘g and Azlj = I‘Z. Thus, the class of auxiliary games Ag IS
a subset of the family of auxiliary games I‘fj with respect to the game G.

Robustness under LTP

» Let ®¥(8*) denote the source set of §* with respect to the game tho-

> . The stability of a prior strategy p € A w.rt. 0% is a
real-valued function « on ®(6*), which is defined as v(p, 6*) = 1 — t*,
where t* is the smallest £ such that p € ®%(§*).

> . Let the players’ initial beliefs about the other players’ possible
behaviors be represented by a set of prior strategies P. The robustness of
an equilibrium 6* w.r.t. P is defined as R(6*, P) = lglei%l'y(p, 0%), i.e.,

the minimum stability index associated with the priors w.r.t. P.

Example: e-contamination under Equilibria Coordination

» Suppose that players’ initial belief is represented D FI__ A
by the e-contaminated class p
P={(1—¢€P+eQ,Q € P} when " p
P(El) — 0.7, P(Ez) — 0.2, P(Eg) = 0.1
and € = 0.2, where & = {Q : Q =
p1E1 + p2E> + p3sEs, p1 + p2 + p3 = 1},

» R(E1,P) = R(E2,P) = R(E35,P) = 1. c N B

Example: Coordination Failure

» Suppose that all players initially believe that they
will mostly choose a strategy from the
e-contaminated class P, or otherwise adopt the M E
strategy D = (812, S21) with small probability.
All players’ initial beliefs are represented by
P ={1—a)P + aD,0.05 < a < 0.2}

> R(El, P,) — O.8§, R(Ez, P,) — 073, and
R(Eg, P,) = 0.

Concluding Remarks

» As a preliminary investigation, we propose a notion of maximin robustness
of equilibria by reexamining LTP where players’ initial beliefs are

represented by a set of probabilities rather a single probability measure.
» In this paper we employ the maximin criterion to define the concept of

robustness of equilibria.

» We have no intention to argue that the maximin rule is the appropriate decision rule

under uncertainty.
> In fact, we intend to consider using some other decision rules like E-admissibility and

Maximality to develop solution concepts for games with imprecise probabilities.

» We shall consider developing new solution concepts based on some other
game-theoretic solution concepts other than Nash equilibrium by using
imprecise probabilities to represent uncertainty in games.
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